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Dynamic arrest within the self-consistent generalized Langevin equation of colloid dynamics
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This paper presents a recently developed theory of colloid dynamics as an alternative approach to the
description of phenomena of dynamic arrest in monodisperse colloidal systems. Such theory, referred to as the
self-consistent generalized Langevin equation (SCGLE) theory, was devised to describe the tracer and collec-
tive diffusion properties of colloidal dispersions in the short- and intermediate-time regimes. Its self-consistent
character, however, introduces a nonlinear dynamic feedback, leading to the prediction of dynamic arrest in
these systems, similar to that exhibited by the well-established mode coupling theory of the ideal glass
transition. The full numerical solution of this self-consistent theory provides in principle a route to the location
of the fluid-glass transition in the space of macroscopic parameters of the system, given the interparticle forces
(i.e., a nonequilibrium analog of the statistical-thermodynamic prediction of an equilibrium phase diagram). In
this paper we focus on the derivation from the same self-consistent theory of the more straightforward route to
the location of the fluid-glass transition boundary, consisting of the equation for the nonergodic parameters,
whose nonzero values are the signature of the glass state. This allows us to decide if a system, at given
macroscopic conditions, is in an ergodic or in a dynamically arrested state, given the microscopic interactions,
which enter only through the static structure factor. We present a selection of results that illustrate the concrete
application of our theory to model colloidal systems. This involves the comparison of the predictions of our
theory with available experimental data for the nonergodic parameters of model dispersions with hard-sphere

and with screened Coulomb interactions.
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I. INTRODUCTION

The dynamic properties of colloidal dispersions have been
a subject of sustained interest for many years [1-3]. These
properties can be described in terms of the relaxation of the
fluctuations on(r,?) of the local concentration n(r,?) of col-
loidal particles around its bulk equilibrium value n. The av-
erage decay of dn(r,r) is described by the time-dependent
correlation function F(k,t)=(dn(k,?)dn(-k,0)) of the Fou-
rier transform Sn(k,)=(1/N)=Y, exp[ik-r,(t)] of the fluc-
tuations n(r,r), with r;(¢) being the position of particle i at
time 7. F(k,r) is referred to as the intermediate scattering
function, measured by experimental techniques such as dy-
namic light scattering. One can also define the self-
component of F(k,r), referred to as the self-intermediate
scattering function, as Fg(k,7)=(exp[ik-AR(?)]), where
AR(7) is the displacement of any of the N particles over a
time ¢.

In recent work a self-consistent theory of colloid dynam-
ics has been developed [4-9], leading to the first-principles
calculation of the dynamic properties above. This scheme
allows the calculation of F(k,r) and Fg(k,1), given the effec-
tive interaction pair potential u(r) between colloidal particles
and the corresponding equilibrium static structure, repre-
sented by the radial distribution function g(r) or the static
structure factor S(k). This theory, referred to as the self-
consistent generalized Langevin equation (SCGLE) theory, is
based on general and exact expressions [4] for F(k,t) and
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F(k,t) in terms of a hierarchy of memory functions, derived
within the generalized Langevin equation (GLE) approach
and the process of contraction of the description [10,11], and
complemented by a number of physically or intuitively mo-
tivated approximations [5,6]. A systematic assessment of the
intrinsic accuracy and limitations of the resulting approxi-
mate scheme under the simplest possible conditions (model
monodisperse suspensions of spherical particles with no hy-
drodynamic interactions) has also been presented [7]. This
was based on the comparison of the theoretical predictions
for specific idealized model systems, with the corresponding
Brownian dynamics computer simulation data in the short-
and intermediate-time regimes. The same theoretical scheme
has also been extended to describe the dynamics of colloidal
mixtures [8,9]. The theoretical infrastructure just described is
now being applied to study specific systems or phenomena.
The main purpose of the present paper is to address the issue
of its capability to describe the ideal ergodic-nonergodic
transition in simple model colloidal systems.

The fundamental understanding of dynamically arrested
states of matter is one of the most fascinating topics of con-
densed matter physics, and several issues related to their mi-
croscopic description are currently a matter of discussion
[12-14]. Among the various approaches to the understanding
of the transition from an ergodic to a dynamically arrested
state, the mode coupling (MC) theory [14—17] provides per-
haps the most comprehensive and coherent picture. In fact, a
large number of experimental observations in specific sys-
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tems, particularly in the domain of colloidal systems
[18-22], seem to agree with the predictions of this theory.

The mode coupling theory of the ideal glass transition
emerged originally in the framework of the dynamics of mo-
lecular (not colloidal) liquids [16,17]. Although one can ex-
pect [23] that the phenomenology of dynamic arrest does not
depend on the short-time motion (which distinguishes be-
tween molecular and colloidal dynamics), it is convenient to
base a theory for the glass transition of colloidal systems on
the diffusive microscopic dynamics characteristic of these
systems. In fact, in 1983 Hess and Klein [2] proposed the
translation of the mode coupling self-consistent theory from
the molecular context to colloidal systems, and extensive cal-
culations based on such theory were eventually reported in
the literature [24]. More recently, Nigele and collaborators
developed a more elaborate version of this theory [25]. This
scheme has been successfully extended and applied in sev-
eral interesting directions [26], and the level of its quantita-
tive accuracy at short and intermediate times has been docu-
mented [27,28], as well as its capability to predict the same
scenario of dynamic arrest as the original MC theory (MCT).

The SCGLE theory that we shall discuss in this paper
shares with the colloid-dynamics version of MCT developed
by Nigele and collaborators [25] a number of important fea-
tures. Most notably, both were developed with the intention
to describe accurately the short- and intermediate-time dy-
namics of colloidal systems. They, however, differ radically
in the conceptual framework upon which they are built.
Thus, our theory is certainly not another version of MCT,
and differs also from recent variants [29,30] of MCT mainly
aimed at improving the performance of the original theory
concerning the description of the ideal glass transition. Simi-
larly, there is no direct relationship between the conceptual
basis of the present theory and that of other theories of col-
loid dynamics partially or fully based on kinetic-theoretical
concepts [31,32]. For this reason, one important aim of the
present paper is to summarize the basic ingredients of the
derivation of our theory.

The description of the transition to arrested states involves
a large number of issues, which must be addressed system-
atically. One of the most crucial ones refers to the derivation
of practicable, first-principles methods, to predict the loca-
tion of the boundary between the ergodic and the arrested
states of a system, given the effective forces between par-
ticles. In this paper we focus on this particular issue, which is
the nonequilibrium analog of the statistical thermodynamic
derivation of equilibrium phase diagrams. In principle, the
set of coupled nonlinear dynamic equations that constitute
the self-consistent theory must contain this information, and
its numerical solution is the “brute force” but safer route to
reveal it. In this paper, besides numerically solving the full
self-consistent theory for the space and time dependence of
all the dynamic properties involved, we focus on the deriva-
tion of a more direct criterion that allows us to locate the
transition to dynamically arrested states in a much simpler
manner.

This criterion consists of an equation for the nonergodic
parameters, which are the long-time asymptotic values of the
various dynamic properties involved, whose nonzero value is
the signature of the glass state. Just as in MCT [14], this
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equation is derived from the long-time analysis of the self-
consistent theory. In the present case, however, the resulting
equations are reduced to a closed equation for a single scalar
parameter, namely, the long-time value of the mean squared
displacement of a tagged particle, that we denote as 7. This
parameter has a finite value in the arrested state, and is infi-
nite in the ergodic fluid state. Such an equation involves only
the static structure factor S(k) as an input. The solution of
this equation allows then the determination of the wave-
vector dependent collective nonergodic parameter f(k) asso-
ciated to the arrest of concentration fluctuations, which are
written in a remarkably simple explicit expression that only
involves S(k) and 7.

We would like to stress that the main contribution of this
paper is not some specific quantitative advantage of the
theory presented, over MCT or other descriptions of dynamic
arrest. Instead, the main contribution is the proposal of an
alternative and independent perspective to model the glass
transition. The expectation is that this alternative theoretical
framework will join other approaches, most notably MCT, in
the effort to improve our understanding and our predictive
capability regarding dynamic arrest phenomena. We do ex-
pect, however, that the practical application of our self-
consistent scheme will prove to be somewhat simpler than
the use of MCT equations, and that this will facilitate its use
by other people. For example, the extension of our theory to
mixtures is rather straightforward, and this will allow its ap-
plication to many specific systems and phenomena. In order
to explain these advances, however, a preliminary step is to
present the fundamental basis of our theory and to illustrate
its application in the context of the simplest and most para-
digmatic systems and phenomena; this is the main purpose of
the present paper, which is explicitly limited to the context of
monodisperse systems. Furthermore, in this paper we do not
consider the effects of hydrodynamic interactions, which are
fundamental in the discussion of the dynamic properties at
short and intermediate times. As a working hypothesis, in
this paper we shall assume that hydrodynamic interactions
will not influence in a qualitative and fundamental manner
the asymptotic long-time dynamics of the colloidal disper-
sion near its transition to dynamic arrested states nor the
corresponding “phase diagram.”

This paper is organized as follows. In the following sec-
tion and in two appendixes we describe our self-consistent
generalized Langevin equation (SCGLE) theory for colloid
dynamics, and discuss very briefly the physical content and
the rationale of each of the approximations involved in its
formulation. In order for this paper to be reasonably self-
contained, this will involve a certain degree of repetition
with respect to Refs. [4—6,10], which contain all the details
of its derivation and in which the quantitative accuracy of the
most essential approximations of our theory is explicitly
monitored. In Sec. III we derive the equations for the noner-
godic parameters, and illustrate the manner in which this
criterion is employed in the context of the hard-sphere sys-
tem. In Sec. IV we present the numerical solutions of the full
self-consistent theory for the time and wave-vector depen-
dence of the intermediate scattering function of the same
reference system. In Sec. V we present an illustrative selec-
tion of comparisons of the results of the present theory with
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those measured in two experimental model systems. The first
is the suspension of colloidal hard spheres, for which the
transition is theoretically-predicted to occur at a volume frac-
tion of ¢,=0.563, in very close agreement with reported ex-
perimental results. The second is a colloidal suspension of
charged particles. In Sec. VI we present particular details and
limiting conditions concerning the Vineyard-like approxima-
tions introduced in this work. In Sec. VII we discuss and
summarize our main results.

II. SELF-CONSISTENT GLE THEORY

The development of the self-consistent generalized
Langevin equation theory involves four distinct fundamental
elements [6]. The first consists of general and exact expres-
sions for F(k,z) and Fg(k,z) [the Laplace transforms of
F(k,r) and Fg(k,1), respectively], in terms of a hierarchy of
memory functions. The second element consists of the for-
malization of the notion that collective dynamics should
somehow be simply related to self-dynamics. This notion
reduces the problem of colloid dynamics to the independent
determination of Fg(k,z) itself, or of its memory function
C(k,1). The third basic element of our theory is the proposal
for the approximate determination of Cg(k,7). This step is
based on the physically intuitive expectation that space-
dependent self-diffusion, represented by Fg(k,?), should be
simply related to the properties that characterize the Brown-
ian motion of individual particles, such as the mean squared
displacement. The fourth ingredient of the theory is provided
by an independent expression for A{(z), the time-dependent
friction function that embodies the effects of interparticle
interactions on the Brownian motion of individual tracer par-
ticles, and which can be approximately written in terms of
F(k,r) and Fg(k,1), thus constituting a final closure of our
fully self-consistent theory of colloid dynamics.

Let us now review each of these four elements in some
more detail. In Ref. [4] the GLE approach and the concept of
the contraction of the description [10,11] were employed to
derive the most general time-evolution equation for the fluc-
tuations dn(r,r) of a monodisperse colloidal suspension in
the absence of hydrodynamic interactions. In such deriva-
tion, the assumed underlying microscopic N-particle dynam-
ics was provided by the many-particle Langevin equation
[1]. As a result, expressions were derived for F(k,r) and
F(k,t) [or their Laplace transforms F(k,z) and F(k,z)] in
terms of a hierarchy of memory functions, and of well-
defined static structural properties of the Brownian fluid. In
these expressions, the Brownian relaxation time =M/ Ie
(or the corresponding frequency zz= Tl}l) appears, where M
and {0 are, respectively, the mass and the solvent-friction
coefficient of each particle in the suspension. In the absence
of friction ({°— 0), these expressions correspond to those of
a simple atomic liquid [33,34]. In the presence of friction,
and in order to “tune” these expressions to the time regime
normally probed by dynamic light scattering experiments or
by Brownian dynamics simulations, the limit > 75, or z
<z, must be taken. Taking this so-called “overdamping”
limit [4] requires a careful analysis, which was the main
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subject of Ref. [4]. As a result, one obtains the most general
expression for F(k,t) and Fg(k,t) that describes the dynam-
ics of the suspension in the diffusive regime (i.e., for times
t> 7). In Laplace space, the resulting “overdamped” expres-
sions for F(k,z) and F(k,z) read [4]

B S(k)

F(k,z) = —kZDOS‘l(k) (2.1)

= Y

1+ C(k,z)

and
1

FS(k’Z) = kzD s (22)

e VS

Ta k)

where C(k,z) and Cg(k,z) are the respective memory func-
tions.

We should mention that these results are exact, and can be
derived in a variety of manners. They can be derived, for
example, from the N-particle Smoluchowski dynamics using
the projection operator formalism, C(k,z) and Cs(k,z) being
referred to as the “irreducible memory functions” [25,26].
These general results constitute the starting point of the
MCT, and they are also the basis of our present SCGLE
theory. In our case, however, the generalized Langevin equa-
tion approach also provides exact expressions for the irreduc-
ible memory functions in terms of higher-order memory
functions denoted by AL(k,z) and ALg(k,z), namely,

k*Dox (k)

C k’ = = * * = 2.3
)= e O L0 + e T AL () &)
and
K*Doxs(k)
c k, = * * * * .
sk = T L) + T 1AL (2)
(2.4)

In these equations, Dy=kzT/{’ is the free-diffusion coeffi-
cient of each particle (kgT being the thermal energy), S(k)
the static structure factor, and y'(k) the static correlation
function of the fluctuations of the configurational component
of the stress tensor of the Brownian fluid. x"(k) and Lg(k),
along with their self-counterparts X;(k) and LSS(k), are static
properties, which can be written exactly [see Egs. (A1)—(A3)
of Appendix A] in terms of the two- and three-particle cor-
relation functions, g(r) and g®(r,r’), which are assumed to
be known. In practice, the use of Kirkwood’s superposition
approximation allows us to write these properties in terms
only of g(r) [see Eq. (A6)]. Thus, the only unknown proper-
ties in the expressions for F(k,f) and Fg(k,t) in Egs.
(2.1)—(2.4) are the memory functions AL"(k,z) and AL;(k,z).
Neglecting AL"(k,z) and ALg(k,z) in Eqs. (2.3) and (2.4)
leads to the so-called single exponential (SEXP) approxima-
tion [35,36], which consists of Egs. (2.1) and (2.2) with

k*Dox" (k)

~ (SEXP - ,
Clha = ) = T L0

(2.5)

and

041504-3



YEOMANS-REYNA et al.

k>Doxs(k)

CS(k,Z) =~ CgEXP(k’Z) = I+ [Xx(k)]_]L* (k) :
S 0S

(2.6)

This approximation is exact at short times and/or large wave
vectors, an important fact employed below.

As the second ingredient of the self-consistent theory, we
search for a simple approximate relation between collective
and self-dynamics. Vineyard’s approximation [37], which re-
lates F(k,t) directly to Fg(k,t) as F(k,t)=F(k,t)S(k), is a
simple (although qualitatively and quantitatively rather
primitive [33,34]) implementation of this idea. Our proposal
is, instead, to relate the memory function of F(k,r) with the
corresponding memory function of Fg(k,t). In Ref. [5], a
detailed numerical study of alternative such manners to refer
collective dynamics to self-diffusion was carried out. Equa-
tions (2.1)—(2.4) suggest to relate F(k,z) and Fg(k,z) at the
level of their highest-order memory functions. It was found,
indeed, that a very accurate approximation was
AL (k,z)/ Lo(k)=AL;(k,z)/ Lys(k). In practice, however, it
was also found [5] that equally precise connections could
also be achieved at the level of the second-order memory
functions C(k,z) and Cy(k,z). Two specific proposals of such
Vineyard-like approximations were considered [6,9], which
can be written in the generic form

C(k,z) =w(k,z)Cg(k,z) + y(k,z), (2.7)

with w(k,z) and y(k,z) being known functions. The first
approximates the ratio C(k,z)/C(k,z) by its SEXP value,

CSEXP(](,Z)

CgEXP(k,Z) (28)

Clk,z) = [ }Cs(k,z),

where the SEXP memory functions are given by Egs. (2.5)
and (2.6). This is referred to as the “multiplicative”
Vineyard-like approximation, and corresponds to wi(k,z)
=[CSEXP(k,z)/C§EXP(k,z)] and y(k,z)=0. The second ap-
proximates the difference [C(k,z)—Cg(k,z)] by its SEXP
value, and is referred to as the “additive” Vineyard-like ap-
proximation. It is defined by w(k,z)=1 and y(k,z)
=[CEXP(k,7) - C*F (k,2)], i.e.,

C(k,z) = Cs(k,2) + [CF¥F(k,2) - 7 (k,2)]. (2.9)
Later on we shall discuss the merits and deficiencies of these
two specific proposals. Either of them, however, refer collec-
tive dynamics to self-dynamics, represented by the irreduc-
ible memory function Cg(k,z). Thus, we must search for
some form of approximation for this memory function.

The third ingredient of the present theory consists of the
proposal for the approximate determination of Cg(k,). One
intuitively expects that these properties should be simply re-
lated to the properties that describe the Brownian motion of
individual particles, just like in the Gaussian approximation
[1,2], which expresses Fg(k,?) in terms of the mean squared
displacement W(t) as Fg(k,t)=exp[—k*W(t)]. The present
self-consistent theory introduces an analogous approximate
connection between the functions Fg(k,t) and W(r), but at the
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level of their respective memory functions. The memory
function of W(r) is the so-called time-dependent friction
function A{(7). Although we do not have a physically trans-
parent notion to guide us, we know, however, two exact lim-
its that Cg(k,f) must satisfy. Thus, for large wave vectors
Cylk,1) is given exactly by C{**F(k,7), whereas for small
wave vectors Cq(k,1) is given exactly by the time-dependent
friction function AZ(z). This function, normalized by the sol-
vent friction {,, is essentially the memory function of the
velocity autocorrelation function. In Ref. [6] it was proposed
to interpolate Cg(k,f) between these two exact limits by
means of the following expression:

Cs(k,t) = CP (k1) + [AL (1) = CF¥F (k) IN(K),
(2.10)

where AZ"(t)=AZ(1)/,, and \(k) is a phenomenological in-
terpolating function, such that AN(k—0)—1, and \(k— =)
— 0. The detailed functional form of this interpolating func-
tion will be described shortly.

The last ingredient of our theory is an expression for the
time-dependent friction function AZ"(¢). For this property, a
general and exact result has also been derived [ 10] within the
framework of the GLE approach; the corresponding deriva-
tion is summarized in Appendix B. Such an exact result,
however, can be simplified by means of well-defined ap-
proximations [10], also indicated in Appendix B, to read

AL Dgn J k{ kh(k)
L 302w’} 1 + nh(k)

2

(2.11)

where h(k)=[S(k)—1]/n. This approximate expression for
AZ*(1) is one of the most important ingredients of the present
theory. Let us mention that exactly the same expression was
first introduced to the context of colloid dynamics by Hess
and Klein [6], with arguments borrowed from mode coupling
theory. As it is apparent from the derivation in Appendix B,
our derivation follows a completely independent line of rea-
soning, and provides possible systematic manners to relax
the approximations involved.

A closed system of equations results from all the argu-
ments and approximations above, which can be summarized
by the exact results in Egs. (2.1) and (2.2), complemented
with either of the Vineyard-like approximations of the ge-
neric form in Eq. (2.7), plus the interpolating formula in Eq.
(2.10), along with the closure relation for the time-dependent
friction function in Eq. (2.11). All the elements entering in
these equations, including the SEXP approximation for the
memory functions in Egs. (2.5) and (2.6), involve only static
properties, which can be determined by the methods of equi-
librium statistical thermodynamics, given the potential u(r)
of the pairwise forces between the particles. Concerning the
interpolating function \(k), a functional form of the general
type A(k)=[1+(k/k.)"]~" was proposed [6], and the choice of
the parameters k. and v was made by comparing the theoret-
ical predictions for various values of k. and v with exact
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(computer simulated) data for a particular model system, at a
given state, and at a given time. This led to the following

prescription for A(k),
1
k\*
1+ (—)
kmin

where k,;, is the position of the first minimum of the static
structure factor S(k) of the system. This turns out to be an
excellent interpolating device for all systems considered so
far. Although no fundamental basis is available for this
choice of \(k), this definition is universal (in the sense that it
is the same for any system or state), and renders the resulting
self-consistent scheme free from any form of adjustable pa-
rameters.

Since this self-consistent theory was not conceived within
the theoretical framework of mode coupling theory (MCT), it
makes little sense to define it in terms of a certain choice of
the so-called vertex function, i.e., the specific manner in
which the memory functions C(k,z) and Cy(k,z) are ex-
pressed in terms of F(k,z) and Fg(k,z) themselves. In our
case, however, we may say that such a relation is contained
in the (multiplicative or additive) Vineyard-like approxima-
tion, Eq. (2.7), plus the closure relation for Cg(k,z) in terms
of the time-dependent friction function in Eq. (2.10), along
with the approximate expression in Eq. (2.11) for AZ*(¢) in
terms of the intermediate scattering functions. We should
mention that the general scenario of the ideal glass transition
provided by our theory at this level of approximation, how-
ever, seems to be remarkably similar to that predicted by the
MCT concerning, for example, the qualitative phenomenol-
ogy of the relaxation of F(k,t) and Fg(k,t) near the transi-
tion, as illustrated below with the full solution of this self-
consistent system of equations. Before that, however, let us
discuss the prediction of the theory regarding the location of
the boundary between ergodic and nonergodic states.

A(k) = (2.12)

III. NONERGODIC PARAMETERS AND THE LOCATION
OF THE GLASS TRANSITION

In this section we derive a criterion that allows us to lo-
cate the glass transition in a particularly simple manner, us-

Dol’l
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ing only the static structure factor as an input. This criterion
is the prediction of our theory concerning the long-time
asymptotic value of the various dynamic properties. For the
intermediate scattering function, f(k)=lim,_., F(k,1)/S(k) is
referred to as the nonergodic parameter. Here we also define
c(k)=lim,_, C(k,1), cg(k)=lim,_ ., Cs(k,f), and AL
=lim,_,.. AL (f). The nonzero value of these nonergodic pa-
rameters is a signature of the glass state. The equation that
determines AZ"™) constitutes the criterion referred to above.

To derive this criterion, let us substitute the dynamic
properties above, involved in the self-consistent system of
equations in Egs. (2.1), (2.2), and (2.9)—(2.11), by the sum of
their asymptotic long-time value plus the rest (which, by
definition, always relaxes to zero). In the resulting system of
equations, let us now take the asymptotic long-time limit,
thus generating the following self-consistent system of equa-
tions for the “nonergodic” parameters of the properties in-
volved:

_ c(k)

o = c(k) + kK*DoS™' (k)" G.1)
_ cs(k)
fS(k) - CS(k) + kzDO 5 (32)
c(k) = w(k)cs(k), (3.3)
cs(k) = N(k)AL™), (3.4)
and
#(o0) _ Don f [kh(k)]z

AT =300 | B RsR, 35)

with w(k)=w(k,z=0). Using Egs. (3.3) and (3.4) in Egs.
(3.1) and (3.2), we can express the nonergodic parameters
f(k) and fg(k) in terms of AZ"™). Substituting the resulting
expressions in Eq. (3.5), we finally obtain the following
closed equation for A" *):

[kh(NK)AL “ Pw(k)

AL = f dk — - — )
32m)? [1 + nh(k)Tw(ONK) AL @ + K2DoS™ (k) INK)AL ™) + k2D ]

Clearly, this equation always admits the trivial solution
AZ"™ =0, which corresponds to the ergodic fluid state. The
existence of other nonzero real solution(s) is associated to
the glass state. The ideal glass transition is located at the
boundary of the region where this equation ceases to have
real solutions other than the trivial ergodic solution. In prac-
tice, we eliminate the trivial solution by dividing Eq. (3.6) by
AZ"™), and rewriting it as

(3.6)

[S(k) — 1PN (k)w(k)y
[w(kN(K)S(k) + K2 Y]\ (k) + k]

=1, (3.7)

1 o0
d[y;8]= p— f dkk*
0

with 7y defined as y=D,/A{"™). That v is the mean squared
displacement can be seen from the fact that if the time-
dependent friction function A" (¢) decays to a nonzero value

041504-5



YEOMANS-REYNA et al.

0.04 ; . . . . :

0.03r-

00 0.02 0.04 0.06 0.08 //
v

0.01F -

FIG. 1. Real solutions y of Eq. (3.7) with w(k)=1. Below ¢,
=0.537 this equation has no real solutions. Above ¢, two solutions
appear, illustrated by the two branches that bifurcate at ¢,. The
branch for which y decreases with ¢ (solid line) corresponds to the
physical solution of the glass state. In the inset we plot the func-
tional ®[y;S] as a function of y for the volume fractions ¢=0.45,
0.50, 0.55, and 0.60 (from bottom to top).

Ag“*(“), then this generates a harmonic force term in the ef-
fective Langevin equation that describes the Brownian mo-
tion of a representative tracer particle [see Eq. (B5) of Ap-
pendix B], with a spring constant given by {,AZ"™). From
the equipartition theorem, it then follows that ([Ax(#)]*)
=kpT/[LAL ™ ]=y.

In terms of vy, Egs. (3.1) and (3.2) for the nonergodic
parameters f(k) and f(k) read

IR ONN
o) = w(k)N(k)S(k) + K>y (3.8)
and
__ MNP

These equations clearly show that y and the nonergodic pa-
rameters f(k) and fg(k) only depend on the static structural
properties w(k), \(k), and S(k), and not on transport proper-
ties, such as Dy. In Eq. (3.7), ®[y;S] is a functional of S(k)
and an ordinary function of y. Thus, for a fixed state, i.e., for
fixed S(k), this equation may be solved by plotting ®[y;S]
as a function of y to see if it crosses unity, and for which
value(s) of vy it does so. This procedure leads to the determi-
nation of the real nonzero solutions of Eq. (3.7).

This is illustrated in Fig. 1 for the hard-sphere (HS) sys-
tem, using the static structure factor S(k) given by the solu-
tion of the Percus-Yevick (PY) approximation [33,38] in the
evaluation of the functional ®[y;S] with w(k)=1 (additive
Vineyard-like approximation). Let us mention that later on in
this paper we shall attempt a quantitative comparison of the
theoretical predictions of our dynamical theory with experi-
mental data. At that moment we will compare the additive
with the multiplicative approximations, and will replace the
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FIG. 2. Nonergodic parameters f(k) (heavier solid line) and
fs(k) (lighter solid line) calculated with Egs. (3.8) and (3.9), respec-
tively, with w(k)=1 (additive Vineyard-like approximation), for the
HS system with S(k) given by the PY approximation at the ideal
glass transition volume fraction ¢,=0.537. The dashed lines are the
corresponding results for the multiplicative Vineyard-like approxi-
mation [w(k) given by Eq. (3.10)], at its transition volume fraction
$,=0.513.

PY by other more accurate approximations for S(k). In this
section, however, we base our illustrative calculations on the
PY approximation, since its analytic solution [39] makes it
very easy to program, so that anybody can reproduce the
numbers reported here. Of course, the qualitative picture
gained will not be affected by these quantitative details.

The inset of Fig. 1 exhibits the dependence of the func-
tional ®[7y;S] on 7y for various volume fractions. Clearly,
below a threshold volume fraction ¢g, @[ y;S] remains be-
low 1 for all y, and hence, there are no real solutions. Thus,
the system must be in the ergodic state, described by the
trivial solution with A{"®=0 (i.e., y=2). Above ¢, there
are two real solutions, one of which corresponds to the glass
state. In this manner, we determine this threshold value to be
¢g=0.537, which is then the prediction of this criterion for
the ideal glass transition volume fraction when the PY static
inputs are employed. As indicated in Fig. 1, right at the tran-
sition there is only a single solution for v, namely, y
=1.094 X 10202, where o is the hard-sphere diameter. This
solution for y may then be employed in Egs. (3.8) and (3.9)
to determine the nonergodic parameters f(k) and f(k); in
Fig. 2 these properties are plotted for the HS system at its
glass transition volume fraction.

For volume fractions beyond the transition, in the glass
state, one must choose as the physical solution the branch
corresponding to the smallest of the two mathematical non-
zero solutions for y (solid curve in Fig. 1). The reason for
this is that one can show that v is actually the mean squared
displacement of the colloidal particles, as they rattle confined
to the frozen cage formed by their neighbors. Since the size
of this cage decreases with increasing volume fraction, the
mean squared displacement y should decrease as well.

The same calculations can be performed for the multipli-
cative Vineyard-like approximation. Let us mention, how-
ever, that in this case the function w(k)=CS*F(k,z=0)/

041504-6



DYNAMIC ARREST WITHIN THE SELF-CONSISTENT ...

C3E*P(k,z=0) contains integrals of derivatives of the pair
potential involved in the second and third short-time moment
conditions. These short-time moments do not exist for the
hard-sphere potential (or for other discontinuous interac-
tions), due to the divergence of such integrals; this reflects
the nonanalytic behavior of F(k,r) and its memory function
at =0 for these potentials [2,3]. It happens, however, that the
divergent functions CS¥*F(k,z=0) and C‘;EXP (k,z=0) above
can be evaluated for a soft-sphere potential u(r) ~r~", and
the hard-sphere limit ¥— o limit can be taken in the result
for their ratio w(k). This leads to the finite limit

wiS(y) =1 -3(y* sin y + 2y cos y — 2 sin y)/y?,
(3.10)

with y=ko. This expression, along with the PY approxima-
tion for S(k), allows us to apply Egs. (3.7)—(3.9) above to the
hard-spheres system, with the results y=1.27 X 107262 and
¢,=0.513. The corresponding result for the non-ergodic fac-
tors are also displayed in Fig. 2.

IV. FULL SOLUTION OF THE SELF-CONSISTENT
SCHEME

The criterion above constitutes a shortcut to the quick
determination of the ergodic-nonergodic transition. An alter-
native lengthier route is the actual numerical solution of the
full self-consistent set of equations in Egs. (2.1), (2.2), and
(2.5)—(2.12), as illustrated in this section. For this, Egs. (2.1)
and (2.2) are first Laplace inverted, and written as a set
of coupled integrodifferential equations involving functions
of k and t. These equations, complemented with Egs.
(2.5)—(2.12), are then discretized in a mesh of points large
enough to ensure independence of the solution with respect
to the size of the mesh. The discretized system of equations
is solved by the method described in Refs. [40,41]. Previous
to this procedure, one first has to determine the radial distri-
bution function g(r) for the desired pair potential, and then
calculate the other static properties [S(k), x"(k), Lz(k), X;(k),
and Lés(k)].

There is, however, a little technicality to mention, con-
cerning the application of the full self-consistent theory to
the hard-sphere system, and has to do with the integrals that
define the static properties x"(k), Ly(k), xs(k), and Lys(k). As
indicated above, these integrals involve derivatives of the
pair potential, which do not exist for the hard-sphere system
(the criterion derived in the previous section does not have
this limitation, since it involves only the static structure fac-
tor as an input). We can circumvent this limitation, however,
taking advantage of the principle of dynamic equivalence
between soft and hard spheres explained in Ref. [42]. Thus,
in order to apply the full theory to the HS system, one actu-
ally applies it to a soft-sphere system, and a simple rescaling
of the results allows us to obtain the properties of the HS
system. We have carried out this exercise within the PY ap-
proximation for S(k) (which, for soft-sphere potentials, has
to be solved numerically).

Proceeding in this manner, at any arbitrary state, we can
calculate all the dynamic properties, including F(k,1),
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F(k,1), and A{(z), and check directly if these properties de-
cay to zero or not, thus leading to the prediction of the loca-
tion of the glass transition, and of the values of the noner-
godic parameters at the transition, and in general, at other
glass states. Of course, the results thus obtained turn out to
coincide exactly with those of the static criterion above (Sec.
III). For example, for the hard-sphere system within the
Percus-Yevick approximation this procedure leads, in the
case of the additive Vineyard-like approximation, to the lo-
cation of the glass transition at ¢,=0.537, and to the same
value of the nonergodic parameter A" determined in Sec.
I (y=Dy/ AL ™=1.094 X 107202). Finally, the nonergodic
parameters f(k) and fg(k) determined by this exact route
agree with those determined in Sec. III (plotted as the solid
curves in Fig. 2). Similar comments apply in the case of the
multiplicative Vineyard-like approximation.

Let us now discuss the relevance of the accuracy of the
static structural properties [S(k) and g(r)] employed as inputs
in the actual applications of the self-consistent dynamic
theory. As indicated before, all the illustrative numerical cal-
culations reported so far have referred to the hard-sphere
system, and have involved, for simplicity, the use of the
Percus-Yevick approximation for the input static properties
S(k) and g(r). The use of this approximation is itself a source
of inaccuracies, which we can minimize or eliminate. For the
HS system, we improve the PY approximation with the semi-
empirical Verlet-Weis (VW) modification [43], which pro-
vides virtually exact hard-sphere radial distribution functions
up to the freezing transition.

The first noticeable consequence of improving the input
static properties is a rather dramatic change in the prediction
of the location of the ideal glass transition, from ¢g=0.537
with the PY approximation, to ¢,=0.563 with the Verlet-
Weis-improved Percus-Yevick (PY-VW) approximation. The
mean squared displacement parameter 7y changes from vy
=1.094X10720° to y=1.060X 10720 The corresponding
change in the nonergodic parameters f(k) and fg(k) turns out
to be rather insignificant, and the new results virtually super-
impose on the solid lines of Fig. 2. Similar observations
apply for the multiplicative Vineyard-like approximation,
with ¢, increasing from its PY value ¢,=0.513 to ¢,
=0.537, and with y decreasing from y=1.27 X 10262 to y
=1.23 X 107202. From now on in this paper, when referring
to the results of our theory for the hard-sphere system, we
shall refer to the results obtained with the more accurate
PY-VW approximation for the static properties.

The numerical solution of the self-consistent theory pro-
vides the complete scenario of the relaxation of the dynamics
of the system, and of the process of dynamic arrest, as the
glass transition is approached. Here we illustrate this process
with the theoretical results for the relaxation of the interme-
diate scattering function described by our theory within the
additive approximation in the vicinity of the hard-sphere
glass transition. In Fig. 3 we plot the correlator f(k,?)
=F(k,1)/S(k) as a function of time (in units of 7= 02/D,) at
hard-sphere volume fractions ¢=0.559, 0.560, 0.561, 0.562,
and 0.563(=¢,), with the input static properties provided by
the PY-VW approximation. In reality, the short-time dynam-
ics of our theory requires static information that is not de-
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FIG. 3. Time-relaxation of the collective correlator f(k,?)
=F(k,1)/S(k) for the HS system in the vicinity of the glass transi-
tion, for the hard-sphere volume fractions (from bottom to top) ¢
=0.559, 0.560, 0.561, 0.562, and 0.563(=¢,). The time is expressed
in units of 7,=02/D,.

fined for the hard-sphere potential. As explained in detail in
Ref. [42], however, the hard-sphere static and dynamic prop-
erties can be calculated for a dynamically equivalent soft-
sphere system. Thus, our dynamic calculations for the HS
system were in fact performed on a soft-sphere system with
pair potential given, in units of the thermal energy kzT
=B, by
1 2

— - +
(rlo)*  (rloy)”

Bu,(r) = L, 4.1)
for 0 <r< oy, and such that it vanishes for r> o. The static
input S(k) for this system with »=100 was provided by the
method explained by Verlet and Weis [43], based of the so-
lution of the Percus-Yevick approximation [38,39]. Thus, the
curves in Fig. 3, corresponding to the sequence of hard-
sphere volume fractions given above, also correspond to the
(v=100) soft-sphere volume fractions ¢*=0.571, 0.572,
0.573, 0.574, and 0.575(:4)?)), respectively. These two sets
of volume fractions are related to each other through a
simple rescaling, as explained in Ref. [42].

V. COMPARISON WITH EXPERIMENTAL DATA

Of course, the systematic and extensive comparison of the
present theoretical predictions with the corresponding
experimental or computer-simulated data is needed, and will
be the subject of separate communications. Here, however,
we present a selection of illustrative results, restricted to
the analysis of the collective nonergodic parameter f(k), for
two systems for which experimental data are available,
namely, the hard-sphere suspension and a suspension of
highly charged particles at low ionic strength.

We first discuss the results for the hard-sphere system.
The first noticeable theoretical prediction is the location of
the ideal glass transition. The transition volume fraction pre-
dicted by our theory within the additive Vineyard-like ap-
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FIG. 4. Nonergodic parameter f(k) calculated with Egs. (3.7)
and (3.8) within the additive (solid line) and the multiplicative
(dashed lines) Vineyard-like approximations, for the HS system
with S(k) given by the PY-VW approximation, at the ideal glass
transition volume fraction (solid and heavy lines for ¢,=0.563,
light dashed line for ¢,=0.537). The circles are the experimental
data of Ref. [19], measured at ¢,=0.563.

proximation, ¢g:0.563, turns out to be in excellent agree-
ment with the experimental results reported in Ref. [19]. At
this volume fraction we found y=1.060 X 10~%¢. This leads
to a ratio 8=.{[Ax(¢)]?)/d of the localization length
V{[Ax(1)]*)=y"* to the mean interparticle distance d=n"""
of 0.105, strongly reminiscent of the Lindemann criterion of
melting [46]. In contrast, the multiplicative Vineyard-like ap-
proximation leads to ¢,=0.537, sensibly smaller than the
experimental value, and to a value of the Lindemann ratio of
6=0.112.

The other important property that we can compare to ex-
perimental data is the collective nonergodic parameter f(k).
In Fig. 4 we compare the theoretical results for f(k) obtained
from Egs. (3.8) and (3.7) within the additive Vineyard-like
approximation (solid line; input static properties provided by
the PY-VW approximation) at the volume fraction ¢,
=0.563, with the corresponding experimental data, also re-
ported at ¢,=0.563 [19]. As we can see, the comparison is
very good concerning the height and position of the first
maximum of f(k). We mention that the position of this maxi-
mum of f(k) also coincides with the position of the main
peak of the static structure factor (not shown in Fig. 4). We
observe, however, that at smaller and larger wave vectors,
the agreement between theory and experiment for f(k) dete-
riorates appreciably.

On the other hand, in Fig. 4 we also plot the theoretical
results obtained with the multiplicative Vineyard-like ap-
proximation (dashed lines), also using the PY-VW static
structure factor S(k). In one case (heavy dashed line), we
employed the same input S(k) as in the additive approxima-
tion (solid line), i.e., the PY-VW S(k) at the actual experi-
mental volume fraction ¢,=0.563. The light dashed line was
obtained employing the PY-VW S(k) at ¢,=0.537, which is
the transition volume fraction predicted by the multiplicative
approximation; thus, it corresponds to a zero separation pa-
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FIG. 5. (a) Static structure factor calculated with the PY-VW approximation (solid curve) for the HS system at volume fraction ¢
=0.58; the symbols correspond to the experimental data of Ref. [22]. (b) Theoretical predictions for the nonergodic parameter f(k) of a HS
suspension at ¢»=0.58 within the additive (solid line) and multiplicative (dashed line) Vineyard-like approximations; symbols correspond to

experimental data reported in Ref. [22].

rameter 7= (¢—¢,)/ ¢, from the transition volume fraction
¢,=0.537 predicted by this approximation. Clearly, the latter
curve lies far below the experimental data, whereas the other
two curves, in which the S(k) at the experimentally deter-
mined volume fraction ¢,=0.563 was employed, lie closer to
the experimental data for f(k). The latter calculation within
the multiplicative approximation seems to have a similar de-
gree of accuracy as the additive approximation with the same
static input, although it overestimates the height of the main
peak of f(k). We must bear in mind, however, that these
theoretical results of the multiplicative approximation corre-
spond to a separation distance 7=0.05. The results of the
additive approximation, on the other hand, correspond to a
null separation parameter, thus agreeing with the experimen-
tal data in this regard. Let us also notice an important quali-
tative difference between the additive and the multiplicative
approximations, namely, their predictions for the long-
wavelength limit of f(k). As it was quite apparent already
from the illustrative results in Fig. 2, the additive approxi-
mation leads to the limit lim;_,, f(k)=1, whereas the multi-
plicative approximation leads to lim,_,, f(k) <1. The mean-
ing and relevance of this issue will be discussed below.
The nonergodic parameters can also be measured and cal-
culated at volume fractions larger than (bg, i.e., well inside
the glass region. For example, Ref. [22] reports experimental
data for the static structure factor and the nonergodic param-
eter of a hard-sphere system at a volume fraction ¢=0.58.
Figure 5(a) shows the static structure factor calculated from
the PY-VW approximation for this volume fraction; the ex-
perimental data of Ref. [22] are also included as a reference.
This S(k) was employed as the input of the dynamic theory
in the calculation of the nonergodic parameter f(k), and Fig.
5(b) illustrates the comparison of our theoretical predictions
within both, the additive and the multiplicative approxima-
tions, with the corresponding experimental data. We find a
similar scenario as observed in Fig. 4, except that now both
theoretical predictions coincide in the height of the maxi-

mum of the nonergodic parameter, which is located at the
position as the main peak of S(k), whereas the position of the
experimental first maximum of f(k) is shifted to slightly
larger wave vectors.

Let us finally illustrate the applicability of our theory to
an additional system, this time representative of a colloidal
system with softer interactions. We refer to a colloidal dis-
persion of charged particles, also reported in Ref. [22],
whose effective pair potential may be modeled by the repul-
sive screened Coulomb potential,

exp[—z(rlo-1)]
(rlo)

o) r<ao.

b bl

Bu(r) = (5.1)

This corresponds to the electrostatic contribution of the well-
known Derjaguin-Landau-Verwey-Overbeek (DLVO) poten-
tial [44,45], in which the interaction parameters z and K are,
respectively, the inverse Debye screening length (in units of
o), and the intensity of the pair potential at hard-sphere con-
tact (in units of kzT). Experimental data for this system are
also reported in Ref. [22]. For one of the samples, the hard-
sphere diameter and the volume fraction ¢ are experimen-
tally determined to be =272 nm and ¢=0.27, and data are
provided for the static structure factor. In order to use these
data as the static input in the dynamic theory, we need to
have a smooth representation of the experimental data for
S(k), and hence, we had to fit these data. For this we used, as
a fitting device, the static structure factor calculated within
the hypernetted chain (HNC) approximation [33] for the po-
tential above, and the solid line in Fig. 6(a) corresponds to
the best fit, with z=3.1587 and K=11.6555. This fit was
actually made not by varying z and K independently, but by
using the expressions for these parameters in terms of the
charge Q=Ze~ of the particles provided by the DLVO model
[3,45], namely, z=\24¢Zlz/o and K=157%/[o(1+2/2)?],
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FIG. 6. (a) Static structure factor calculated with the HNC approximation, and (b) theoretical predictions for the nonergodic parameter
f(k) for the charged sphere system, with pairwise forces given by Eq. (5.1) at ¢=0.27, z=3.1587, and K=11.6555; symbols correspond to
experimental data in Ref. [22], solid and dashed lines correspond to the additive and multiplicative Vineyard-like approximations, respec-
tively. The inset in (b) enlarges the region where experimental data for f(k) are available.

where [p=(e")?/ ekgT is the Bjerrum length, and e the dielec-
tric constant of the solvent.

Next, we employed this S(k) as the static input of the
dynamic theory to calculate the nonergodic parameters, ac-
cording to the general results in Sec. III. For this, we first
calculated the mean squared displacement 7y as the solution
of Eq. (3.7), with the result y=2.85 X 103¢” for the additive
approximation, and y=8.68 X 1073¢> for the multiplicative
approximation. The corresponding results for f(k) are com-
pared with the experimental data in Fig. 6(b). As we can see
from this comparison, the agreement with the experimental
data for the nonergodic parameter f(k) of our theoretical pre-
dictions within the additive approximation turns out to be
very good for all the wave vectors reported in the experi-
ment, whereas the predictions of the multiplicative version
turn out to be quantitatively less accurate.

VI. ADDITIVE VS MULTIPLICATIVE VINEYARD-LIKE
APPROXIMATIONS

There is a number of issues regarding the advantages and
limitations of the present SCGLE theory as a proposal of a
competitive quantitative theory of dynamic arrest. Its de-
tailed discussion falls outside the scope of the present intro-
ductory paper. Let us highlight, however, one particular sa-
lient feature, namely, the behavior of the nonergodic
parameters in the small wave-vector limit predicted by Egs.
(3.8) and (3.9). Let us first notice that these two equations
correctly predict that both f(k) and fg(k) are smaller than
unity for all finite wave-vectors k, as expected from general
considerations [14]. From Eq. (3.9), however, we have that
lim,_,, fs(k)=1, and this holds for both the additive and the
multiplicative approximations. On the other hand, Eq. (3.8)
indicates that the collective nonergodic parameter f(k) does
depend explicitly on w(k), and hence, these two versions of
the SCGLE theory will differ in their predictions for f(k), as
illustrated in the previous section. Although both versions

correctly predict that f(k)<1 for k#0, their long-
wavelength description of f(k) is qualitatively different.
Thus, while the additive approximation predicts that
lim,_, f(k)=1, the multiplicative approximation predicts
that lim,_,q f(k) < 1; the latter can be seen by noticing that in
general the function w(k)=C**(k,z=0)/C3*"(k,z=0)
vanishes as k? for small k. This contrast between the additive
and the multiplicative approximations is clearly apparent in
Figs. 4—6. Unfortunately nobody has rigorously derived any
form of “sum rule” that fixes the exact value of f(0).

Let us mention that MCT predicts that f4(0)=1 and that
f(0)<1 [14], just the same as the multiplicative version of
our SCGLE theory. The value f(0)=1 obtained from the ad-
ditive SCGLE theory, on the other hand, represents an inter-
esting physical concept, namely, that of a macroscopically
infinitely rigid solid. The mechanical rigidity of a system can
be described by its mechanical susceptibility ¥(k), which can
be written as ¥(k)=[1—-f(k)]x"(k), where x'(k) is its thermo-
dynamic susceptibility [proportional to S(k)] [33,34]. A fluid
[f(k)=0] may have zero mechanical susceptibility only when
X7 (k) vanishes; this would be the case of an incompressible
fluid. In a glass, the condition f(k)=1 is referred to as the
stiff glass approximation [48]. In this approximation, the
glass is stiff {x(k)=[1-f(k)]x"(k) =0} because it is a rigid
solid {[1-f(k)]=0}, and not because it is incompressible
[x"(k)=0]. We may have this condition to apply exactly
only at k=0 [f(0)=1 but f(k) <1 for k# 0], and this defines
an ideally stiff glass only at long wavelengths. Of course,
such a condition is not met exactly by real systems [just as
no real system behaves exactly as an ideal gas or as a hard-
sphere fluid], but it defines a distinct and conceptually im-
portant reference state. The issue of how relevant this refer-
ence state may be to specific real systems must, of course, be
submitted to experimental test [bearing in mind, in analyzing
data pertaining to atomic glasses [49,50], possible fundamen-
tal differences between colloidal (strongly overdamped) and
atomic (solvent-free) systems].
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This issue is, of course, intimately related with our need
to discriminate between the additive and the multiplicative
approximations, concerning their qualitative, quantitative,
and practical usefulness to describe the transition to dynami-
cally arrested states. Nevertheless, in order to check the prac-
tical relevance of these qualitative differences between the
additive and the multiplicative approximations, the predic-
tions of the self-consistent theory, complemented in one case
with the multiplicative and in the other with the additive
Vineyard-like approximation, have been compared with the
results of Brownian dynamics simulations for specific model
systems [9]. From such comparisons, it was concluded that
the difference of the predictions of both versions of the
SCGLE theory are not quantitatively relevant, even in the
regimes where these short-time conditions might be most
important.

The issues just discussed do not provide a definitive cri-
terion for discriminating between the additive and the multi-
plicative approximations. Thus, we must turn to the compari-
son of their specific predictions with the corresponding
experimental measurements, as a more reliable criterion to
prefer one or the other. Although the comparisons presented
in the previous section must be complemented with addi-
tional similar tests, it seems to us pretty apparent that the
additive SCGLE theory provides systematically better agree-
ment with experiment. In addition, it provides a simpler de-
scription of the asymptotic long-time singular behavior, typi-
cal of the approach to dynamically arrested states. A practical
bonus is that it also provides a considerable simplification of
the application of the theory to the problem of locating the
glass transition, since the corresponding criterion, namely,
Eq. (3.7), only involves the static structure factor and not
other static properties associated with the short-time moment
conditions. For these reasons, and because the quantitative
predictions are close enough to the experimental data to al-
low a direct comparison without the need of adjustable pa-
rameters or any form of rescaling of the volume fraction, we
propose to adopt the additive Vineyard-like approximation in
the SCGLE theory presented in this paper in future applica-
tions.

VII. SUMMARY AND DISCUSSION

In summary, in this paper we have introduced the self-
consistent generalized Langevin equation theory of colloid
dynamics as a practicable approach to the description of the
phenomena of dynamic arrest in monodisperse colloidal sys-
tems. For this, we provided a summary of the main argu-
ments, derivations, and approximations that serve as the ba-
sis in the construction of this self-consistent theory. We then
focused on the problem of locating the boundary between the
ergodic and nonergodic regions, and discussed an approach
to achieve this, derived from the same self-consistent theory.
This criterion, which in the MCT literature is referred to as
the bifurcation equation, describes the condition needed to
restore the ergodicity of the system when it approaches the
fluid-glass boundary from the glass side. It consists of an
equation for the nonergodic parameter, and the borderline
condition is the failure of this equation to have nonzero so-
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lutions. This criterion only requires as an input the static
structure factor of the system (which only depends on the
interparticle interactions), and provides a shortcut to the goal
of determining the fluid-glass boundary, alternative to the
solution of the self-consistent set of equations describing the
full time- and wave-vector-dependence of all the dynamic
properties of the system.

One of the elements of the SCGLE theory, namely, the
Vineyard-like connection between collective and self-
dynamics, was the subject of special attention. We consid-
ered two versions of this connection, referred to as the addi-
tive and the multiplicative Vineyard-like approximations.
Although at the end we endorse the former as the most ac-
curate and useful one, we presented and contrasted the re-
sults of both approximations in their comparison with the
experimental data. Before that, however, and as an illustra-
tion and initial calibration, we applied our theory to the hard-
sphere system, first within the Percus-Yevick approximation
for its static properties, yielding ¢,=0.537, and then with the
virtually exact Verlet-Weis-Percus-Yevick S(k) (from now
on, we only refer to the results of the additive approxima-
tion). In this manner we arrived at our prediction for the
location of the glass transition of the hard-sphere system,
¢,=0.563, which is about the best quantitative theoretical
estimate of the location of the glass transition of the hard-
sphere system. The comparison of the predicted nonergodic
parameters at, and above, this glass transition volume frac-
tion, with the corresponding experimental data, was pre-
sented in Figs. 4 and 5, respectively. These comparisons in-
dicate that, for the volume fraction corresponding to ¢,, the
agreement of the theory with the experimental data is very
good regarding the height and position of f(k) at its first
maximum. A similar scenario was observed at the larger vol-
ume fraction, ¢=0.58, except that now we observe that the
theoretical predictions place the maximum of f(k) at the
same position of the main peak of S(k), whereas the experi-
mental data for f(k) exhibits this first maximum at slightly
larger wave vectors. In contrast, the comparison in Fig. 6(b)
with the experimental data of Ref. [22] for the nonergodic
parameter of the dispersion of charged particles exhibits a
remarkable qualitative and quantitative agreement. In par-
ticular, the position of the first maximum of f(k) coincides
with the position of the main peak of S(k) according to both
theory and experiment. We must stress that our theoretical
predictions do not involve any sort of adjustable parameters.

As indicated in Sec. III, the parameter vy, solution of Eq.
(3.7), is the mean squared displacement ([ Ax(¢)]?) of the col-
loidal particles in the glass state, as they undergo Brownian
motion inside the frozen cage formed by their neighbors. It is
then interesting to find out if this quantity has any special
value at the glass transition. According to the theoretical pre-
diction for y reported in the previous sections, the hard-
sphere glass melts when y=1.060X 107202, which means
that the root mean square displacement is of the order of one
tenth of the hard-sphere diameter; notice that at the volume
fraction involved, ¢g=0.563, the mean interparticle distance
d=n"""is d=0.980, so that 5= \([Ax(r)]*)/d~0.105. This
is strongly reminiscent of the Lindemann criterion for the
melting of a crystal [46]. A similar calculation for the
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charged sphere suspension leads to similar conclusions. In
fact, we find more generally that our theory predicts a very
distinctive and universal Lindemann-like criterion for the
melting of a glass for systems with repulsive (soft or hard)
interactions. This, and many other issues related to the de-
scription of dynamic arrest in monodisperse suspensions, can
be addressed with the present theory, which may also be
extended to consider more complex and interesting situa-
tions. These issues, however, will be discussed in detail in
future communications.
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APPENDIX A: STATIC PROPERTIES

For immediate reference, in this appendix we quote the
expressions for the static properties x"(k), LSS(k), )(;(k), and
Lyg(k) associated to F(k,z) and Fy(k,z) [see Egs. (2.3) and
(2.4)] in terms of the two- and three-particle correlation func-
tions, g(r) and g®(r,r'). For the details of their derivation,
we refer the reader to the original source, namely, Ref. [6].
These expressions are

X k) =1+n J &rg(r)

()

(92
L0 =D f Fre()

2D
+Tonfd3rg(r)

Dol’l2

sin kz +

Xk =3 { [ st

and

ksz;S(k)zléDo{n f dre( )azﬁ ”(r)} —Donz[ f &

D,
[1+2coskz]-

&Prd®r' g¥(r,r")(1 = 2 cos kz + cos[k(z — 2')]) X [

&Z,BM(r) ( cos(kz)) B
i S(k) (A1)
2 2
. U (r)‘72 BT (1 cos kz)}
_20” f d*rg(r)(1 = cos kz) [ 9V pulr) ]
0z
'V Bu(r) ] . [ &V',Bu(r')} (A2)
dz az' '
(?2,6’14(}’) } ’ a3
2 2
r?z,g’;tz(r) :| +2Dgn f d’rg(r) [ 9 pulr) v (,98:(}’) }
7' (a4)

+Donzfd3rd3r’g(3)(r,r’)[avfu(r)] : [W,'Bu(rl)}.
7

In the equations above, u(r) is the effective interaction pair potential between colloidal particles. Finally, we should mention
that in this paper we have systematically dropped the subindex “UU” employed in Ref. [6], where (kzT/M)? times x"(k), xs(k),
O(k) and Los(k) are denoted respectively, by xyy(k), XUU(k) Lyy(k), and L(S) (k).
The integrals 1nvolv1ng g¥(r,r’) in these equations were evaluated in practlce with the use of Kirkwood’s superposition
approximation, g®(r,r
value of 1. This leads, in particular, to replacing the integral in the last term of Eq. (A2),

Am¥ (k) = f Prd®r' g (r,r’)(1 =2 cos(k - r) + cos{[k - (r —=r")]}) X (k- V)(k - V')(V - V") Bu(r) Bu(r'), (A5)

by

2

Am® (k) = { J &Prg(r)[1 -cos(k - r)](k - V) V Bu(r) (A6)
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The corresponding approximate expression for the case of
self-diffusion is identical, but without the term involving
cos(k-r). Thus, within these approximations, the only static
input needed by the SCGLE theory is g(r).

APPENDIX B: DERIVATION OF EQ. (2.11)

This appendix summarizes the derivation of Eq. (2.11)
provided in detail in Ref. [10]. Consider a monodisperse col-
loidal suspension formed by N spherical particles in a vol-
ume V in the absence of hydrodynamic interactions, whose
microscopic dynamics is described by the N-particle Lange-
vin equations [1-3]

M0 v 110+ S E 0,

i=1,2,...,N
dt J#Ei

(B1)

In these equations, M is the mass, v,(¢) is the velocity, and °
is the free-diffusion friction coefficient, of the ith particle.
Also, f,(¢) is a Gaussian white random force of zero mean,

and variance (f()f;(0))=kgT¢°28(t)5; 1 (i,j=1,2,...,N;
fbeing the 3 X 3 unit tensor). The pairwise force that the jth
particle exerts on particle i is given by F;;=—Vu(|r;—r;[).

If one is only interested in the motion of individual tracer
particles, then Eq. (B1) for one specific particle (denoted by
the index i=T) may be rewritten exactly as

MdVT(t)

P Ovi(e) + £(2) + J PrVu(r)In'(r,1),

(B2)

where n"(r,1) is the local concentration of the other colloidal
particles at time ¢ and position r [referred to the position
x7(t) of the tracer particle]. In other words, n"(r, ) is defined
as n'(r,t)=n[x/(t)+r,t], with n(x,t)=2,.;x-x,(1)] be-
ing the local concentration at time ¢ and position X, the po-
sitions x;(r) and x being referred to the laboratory reference
frame.

An important observation is then that the direct interac-
tions between the particles, represented by the pairwise po-
tential u(r), couple exactly the motion of the tracer particle
with the motion of the other particles only through the col-
lective variable n"(r,f). The equilibrium average n®(r) of
n'(r,?) is given by n°/(r)=ng(r), with n being the number
concentration, and g(r) the radial distribution function of the
bulk suspension. Due to the radial symmetry of the force
[-Vu(r)] and of n%(r), the integral in Eq. (B2), evaluated at
n"(r,1)=n(r), vanishes. Thus, Eq. (B2) is a linear equation
coupling exactly the time derivative of the tracer’s velocity
v7(r) with itself and with the variable on"(r,1)=n"(r,1)
—n®(r), namely,

dvd—Tt(t) =—{vi(t) + £(0) + f d*r[Vu(r)]on"(r,1).
(B3)

The variable on(r,?) represents the fluctuations around
equilibrium of the local concentration of colloidal particles
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in the presence of the “external” field produced by, and de-
scribed from a reference frame fixed to, the tracer particle.
Thus, we need a relaxation equation that couples the time-
derivative of the variable dn"(r,7) with itself and with v(z).
Its most general structure is dictated by the general principles
of linear irreversible thermodynamics [11] to be a linear ver-
sion of a generalized diffusion equation, with the following
general structure [10]:

aén"(r,1)

" =[Vn(r)]- vy(t) - fa’t fa”r’D (r,r';t=1")

X on'(x',t") + f(x,1), (B4)

where the first term on the right-hand side is a linearized
streaming term and f(r,7) is a fluctuating term, related to
D (r,r’";1) by [ {f(r,0)f(x",t"))o(x",x')=D"(r,r";t-1"),
with o(r,r’)=(én"(r,0)én"(r',0)).

Formally solving Eq. (B4) and substituting the solution
for én"(r,t) in Eq. (B3) leads to
MdVT(l)

ur =—§?VT(t)+fT(t)—f A’ AL(t 1) - v (1)) + F(2),
0
(BS)

where the new fluctuating force F(z) is related with the time-
A¢(@) (F()F(0))
=MkgTAL(t), with A{(r) given by the following exact result:

dependent friction tensor through

INOEE f &r f Sr[Vu(r)]x (r,r;0[V n(r)],
(B6)

where X*(r,r’ ;1) is the propagator, or Green’s function, of
the diffusion equation in Eq. (B4), i.e., it solves the equation

J t
M fdtfd“’D(rr"t )y (" x';t'),

(B7)

with initial value x"(r,r’;t=0)=d(r—r’). Notice that, since
the initial value &n"(r,#=0) is statistically independent of
v,(7) and f(r,t), the density-density time-correlation function
G'(r,r";0)={(én"(r,1)on"(r',0)), which is the van Hove
function of the particles surrounding the tracer particle, and
observed from the tracer particle’s reference frame, is also a
solution of the same equation with initial value G*(r,r’;¢
=0)=0o(r,r’).

To simplify the notation, let us rewrite Eq. (B6) as
AZ(H)=—[Vu']o X (H°[Vnd], where the convolution
[d&*"F(r,x")G(x",r") between two arbitrary functions F and
G is written as the matrix product FoG, and similarly with
the “(column) vectors” u and n?. In this notation, the dagger
means transpose. With this notation, let us recall an addi-
tional exact relation between the “vectors” u, n°, and the
“matrix” o. This is the so-called Wertheim-Lovett relation
[10,47], [Vn?]=—Bo[Vu], of the equilibrium theory of in-
homogeneous fluids. This relation, along with the definition
of the inverse matrix o}, [0"10'=I, with [ being the unit
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matrix, I(r,r’')=8(r-r’), where & is Kronecker’s A func-
tion], allows us to write Eq. (B6) in a variety of different but
equivalent and exact manners. In particular, we will employ
the following:

AZ() = kgT[Vnée o 07 o G () 0 07 o [Vi%d], (BS)

where we have used the fact that the van Hove function G™(¢)
can be written as G (1)=x" (1) o.

This is the exact result for AE(t) that leads to the general
but approximate expression in Eq. (2.11). The approxima-
tions required are related to the general properties of the
functions G*(r,r’;¢) and o(r,r’). The latter is just the two-
particle distribution function of the colloidal particles sur-
rounding the tracer particle, but subjected to the “external”
field u(r) exerted by this tracer particle. Thus, it is effectively
a three-particle correlation function. Only if one ignores the
effects of such an “external” field, one can write o(r,r’)
=o([r-r'|)=ndr-r")+n’[g(lr-r'|)-1]. Similarly, we
may also approximate G (r,r’;t) by G (r-r'|;1).
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This is referred to as the “homogeneous fluid approxi-
mation”  [10], which  allows us to  write
G'(r.r';t)=(1/2m)° [k explik-r]F"(k,1), with F'(k,1)
E(Ef,’j exp{ik-[r,(r)-r;(0)]}). The latter is the intermediate
scattering function, except for the asterisk indicating that
the position vectors r(¢) and r;(0) have the origin in the
center of the tracer particle. Denoting by x;(¢) the position
of the tracer particle referred to a laboratory-fixed reference
frame, we may rewrite F (k,t)={(exp{ik-[x/(1)
—x70)]})- (E?fj explik-[x,(t)-x;(0)]})), where r,(¢) is the po-
sition of the ith particle in the fixed reference frame. Ap-
proximating the average of the product in this expression by
the product of the averages, leads to F'(k,t)=F(k,t)Fg(k,1),
which we refer to as the decoupling approximation [10]. The
result in Eq. (2.11) is obtained from the exact result in Eq.
(B8) above, plus the introduction of the two approximations
just described. For spherical particles, the tensor AZ(t) must

be diagonal, AZ(t):A{(t) f: and Eq. (2.11) refers to the sca-
lar function AZ(r).
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